Researchers have developed a new way to control light that has been scrambled by passage through a single hair-thin strand of optical fibers.

MDDI Staff

June 21, 2021

2 Min Read
IMG_Jun212021at102855AM.jpg
phonlamaiphoto -stock.adobe.com

A team of physicists, led by Dr. David Phillips from the University of Exeter, have developed a new way to control light that has been scrambled by passage through a single hair-thin strand of optical fibers. These ultra-thin fibers hold much promise for the next generation of medical endoscopes - enabling high-resolution imaging deep inside the body at the tip of a needle.

Conventional endoscopes are millimeters wide and have limited resolution - so cannot be used to inspect individual cells. Single optical fibers are about 10 times narrower and can enable much higher-resolution imaging - enough to examine the features of individual cells directly inside living tissue. It is normally only possible to view cells once they have been taken outside the body and placed in a microscope.

Earlier this year, Dr Phillips' group developed a way to measure this key extremely rapidly, in collaboration with researchers from Boston University in the USA, and the Liebniz Institute of Photonic Technologies in Germany [paper: Compressively sampling the optical transmission matrix of a multimode fiber, published in Light: Science and Applications, April 21st 2021].

However, the measured key is very fragile, and easily changes if the fiber bends or twists, rendering deployment of this technology in real clinical settings currently very challenging. To overcome this problem, the Exeter-based team have developed a new way to keep track of how the image changes while the fiber is in use.

This provides a way to maintain high-resolution imaging even as a single fiber-based micro-endoscope flexes. The researchers achieved this by borrowing a concept used in astronomy to see through atmospheric turbulence and applying it to look through optical fibers.

The method relies on a 'guide-star' - which in their case is a small brightly fluorescing particle on the end of the fiber. Light from the guide-star encodes how the key changes when the fiber bends, thus ensuring imaging is not disrupted.

Sign up for the QMED & MD+DI Daily newsletter.

You May Also Like